THERMAL BOUNDARY LAYER IN A CYLINDRICAL
GAS COLUMN CONTAINING BULK SOURCES
AND A BIFILAR CURRENT
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Parameters have been calculated [1] for the thermal layer arising on longitudinal flow of an unbounded
cylindrical column of gas with an arbitrary distribution of the sources.

Here we consider the thermal boundary layer for the more complicated case where there {s a distributed
bifilar current along with the cylindrical region of heat input. The current in one direction flows through the
volume where the heat is produced, while the reverse current, which is equal in magnitude, flows in the current
layer (part of the thermal layer) in accordance with the distribution of the gas conductivity. The magnetic field
vanishes outside the current layer, while within it the interaction between the currents and the induced mag-.
netic field results in ponderomotive forces. A difference from [1] is that the flow in that case is not in general
isobaric. The current produces Joule heating, namely an additional bulk heat source, which extends to the
entire current layer and which may play an important part in the energy balance. We consider the stationary
state on the assumption that thermal conduction is the main mode of heat loss. The problem can be formulated
as follows in a frame of reference coupled to the free flow: One has to determine the structures of the thermal
and current boundary layers formed in rectilinear motion of distributed heat sources and the bifilar current
in the gas.

1. Figure 1 shows the disposition of the axes of the cylindrical coordinate system and the sections of the
thermal and current layers. The forward current Iwith density j,= (0,0, j;) is localized in a column of radius
e and sets up the azimuthal magnetic field By = (0, By, 0). The reverse current with densityj= (s 0, —j,) pro-
duces the opposite field B'= (0, =B, 0). The component jr of the reverse current is localized in the main in a
small region of the initial section. The total magnetic field B= (0, B, 0) can be written as

B = By — B = p2ar(J, — J),
where

Jo= {2arsr, 7 = { 2arj dr, a.1)
0 0

and u is the magnetic permeability. The output of the external heat sources is

b == const, (r<Ca),
g=bp, b'—{ 0, (r>a).

The discussion below can be transferred directly to the case of any g (o, h) relation. The law adopted for
the energy production applies in particular when a flux of charged particles is retarded by ionization in matter
[2]. The electric field provides for the passage of the reverse current. It is assumed that the current distribu-
tion can be described hy a scalar conductivity

i=o(E + vxB), 1.2)

where v= (v, 0, u) is the gas speed. The following is the initial system of equations for a perfect nonviscous
gas in the absence of flow spiralling

O(rpv)/or + d(rpu)/ds = O {1.3)

o(v Gu/dr -+ uouldz) = —ip/dz + j.B,; (1.4)

p(v dv/dr -+ u dv/dz) = —adpldr + },B,; (1.5)

(0 OR/Or + 1 0h/Gz) = v p/dr - uop 'z + div((Mey)yh) + g + o (1.6)
p = (7 — Dok 1.7)

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 5, pp. 78-84, Septem-~
ber-October, 1982. Original article submitfed July 16, 1981.

662 0021-8944,/82/2305-0662$07.50 © 1983 Plenum Publishing Corporation



"y

\

i
Yoo | i
B I it ==
— = f - h <
TN
Fig. 1

Here p is pressure, h specific enthalpy, A thermal conductivity, Cp specific heat, and v the adiabatic param-~
eter. M (1.4) and (1.5) we have omitted the j; X B term, and in the energy equation we have incorporated only
the ohmic dissipation for the reverse current. These assumptions are correct for example when the forward
current is transported by a flux of relativistic electrons.

2. The system (1.2)-(1.7) can be simplified substantially for this model. Asj, is small everywhere apart
from near the origin, there can be marked changes inthe axial velocity and pressurealong z only within this
region. We assume further that the pressure is only slightly dependent on z within the thermal layer (calcu-
lations for the entire range of conditions confirm this, as the pressure hardly varies along the axis of the ther-
mal layer). Then (1.4) shows that we can neglect the change in the axial velocity of the fiow to a first approxi-
mation and put

u ~ const. 2.1)

The integral of (2.1) is exact in the absence of ponderomotive forces and is given in [3] for an electric
arc. In [3, 4] we find bounds for the increment in the longitudinal velocity and the variation with z. We can
certainly neglect the change in the axial velocity if pl?/{8n2p.ua?) <« 1, but in practice the region is muchwider.
It is also permissible to put u=u,,, since the effects of the error arising at the start of the layer vanish as z
increases.

Equation (1.5) in the boundary-layer approximation is a condition for radial equilibria op/dr=j,B, or in
integral form

3

dr .
p=po—A4= (0, - D). @.2)

We eliminate the electric field from (1.2) and integrate the resulting equation with respect to r within
the thermal layer to get

A
2.3
Brlems — By lrmo = — oo { Bar ~ 2 @.3)
0
As v is small, one can neglect the induced current in (1.2) for j, and write Chm's law as
J. = oE, 2.4)
or an integral form on the basis that the current is bidirectional
A .
1= E, | 2arodr. 2.5)
0
The following is the energy equation (1.6) in the boundary-layer approximation:
an 3k 3 3 1 3 A oA .
QUWWLP“E’—‘U%WL“TZ'*TW(’T#}+Q+JZE,. @)
b

The boundary conditions are
U!r>0 = 0’ h|;=0 = ]lws h’r—>°° = hco’ c”h/a"‘lr=0 = 07 U|z=0 = 01,
dh/a]_]r-*m = O.s' ap/arlr=o - 0» p}z=o == Pooy P|r—>eo = Poa-
3. We follow [3, 4] and solve the problem by an approximate method similar to the Karman—Polhausen
integral method. We integrate (1.3) and (2.6) with respect to r within the thermal layer and eliminate v (A, z)

to get
d 42 1k, bazpm

PocPootles '

(3.1)

where



. 2 ap ap
Qp T UeePoly, j r(b_d—l- + w?) dr;
0
A - 1 ;
9 ’ P 3 g p
A} = 95-&(———-—1)rd1 = 2A? S—s—(h———i)ndn::k(—hi”—- )p-im. 3.2)
5 / b © © L

Here 4y, is the thickness of the layer in which enthalpy is acquired, while Qp is the heat source associated
with pressure change, n =r/A, and the subscript m indicates values of variables atthe axis. The heat arising
because of friction and compression on flow over a solid impermeable surface is important if the flow speed

is so high that the rise in temperature from adiabatic compression is of the order of the temperature differ-
ence between the body and the gas at infinity [5]. In the present case of a permeable obstacle, the compression
effect is naturally much less (for example, there is no pressure change at all if electromagnetic effects are
absent [1]. Also, as z increases the temperature difference within the thermal layer considerably exceeds

the temperature level in the free flow. Therefore, Qp will be neglected in what follows. In that case a solu-
tion can be obtained by using a one-parameter approximation for the enthalpy profile:

= b A+ (b — Be)f(),
where the function f(7) satisfies the conditions
f0) =1, f(0) =0, /(1) =0, f(1) =0, f'(1) = 0,... @.3)
The conditions of (3.3) are satisfied by the polynomial
fn) = (1 — N1 4 Nm).
We used a polynomial of fourth degree (N=3). The coefficient k in (3.2) is a function of ppy,:

1 1
= {2 1 nan >k, = [ 21 s nan, @.4)
[ 0
According to (3.4), k; =0.2 for N=3; if there is a greater reduction, when the mean density 5 > ppy,, then
we have k<1. One can take k as approximately constant (k< 1) because the effects of the inaccuracy permitted
in the initial part vanish as we move away from the start of the layer.

Equations (2.6) and (2.2) take the following form at the axis:
dh,, ° N gy A,
Prtos 22 = Do - O 5 — 2L By, — ) 3.5)
A
uE,
P = P — A= | Lo, — 7). (3.6)

0

The system (1.7), @.5), (3.1), (3.5), (3.6) enables one to determine Ay, hy, Pm, Pms Ezs We use the following
approximations for the properties of the medium {4]:

A A

cpmm _ ;:0 l/hm’ o (h) —0'01/ exp(—--———). 3.7)

Formula (3.7) for the conductivity describes the transitxon from a cold gas to a weakly ionized one satisfactorily.
‘We have 0y =430 mho/m, o =187 for air under normal conditions. It is convenient to isolate the radial depen-
dence of ¢ in explicit form:

G = Onmllm)o’(z, 7])1 o < 1,

where ¢ = l/-f+h (1 — fexp 1__ Oy (B ,+( oo)_1,;)f;}

7

‘Wea put © (n) = Sna’dn, o, = o (1),to write (1.1) and (2.5) as
[}

J = 2n00,E,A%, I = 2r0,0,E A2 3.8)
correspondingly. Assuming for definiteness that j, =constant we get from (1.1) that

Jo = Tixn), 3.9)
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Ala?) vy, (n<<a/h),

h i = ;
where i;(n) { 1, (n=a/A).

‘We introduce the dimensionless variables
= bZ/hmuw, ’\,l) == A;‘:/aZ’ g == hm/hmx ; i pm/pwn
P = 0m/Pe, T = O/ Gy, & = 4na’o K, /kI

fthe bars are subsequently omitted). The system becomes

dp/dz = p + Ge; 3.10)
dgide = 1 + (ki4)Gostlp — Alg — 12V g/ (3.11)
e = 2(g — 1)p/(opoy); 3.12)
1
— _Jiwjﬂr-__m_. (3.13)
p=t=2 ey g 1 ° (‘o ”1)7.
D =pg, (3.14)

where G = il%(4nta'ogbpa); P = Epl(8nta?py), A = 2N(N + Dkhwho /aPcpobp). The problem contains three
similarity criteria G, #, A instead of A along in [1]; G is the ratio of the Joule heating to the heating from the
external bulk heat sources, while & is the ratio of the magnetic pressure to the gas-kinetic value. The bound-
ary conditions are ¢ (©0)=0, g(0)=1, p©0)=1, p(0) =1.

4. The characteristic feature of this problem is similar to a feature in the problems of boundary-layer
type and lies in the formation of the initial conditions at x =0 (singular point). If we assume that the thermal
layer has a thickness ~a at x=0, then the solution is incorrect at distances of the order of several g near the
initial section because equations of boundary-layer type do not apply in that region. Also, the conditions for
smallness of j, do not apply near the initial section, nor does the bound of (2.3) for the eleciric field, and there-
fore expression (2.4) for Ohm's law does not apply, nor do certain approximations such as (3.9). As o0—0 at
the start of the layer (Fig. 1) we have for (3.8) that E, —~« if i =constant. To avoid this difficulty in numerical
solution we take the current in the initial section as varying in accordance with

I(1 — e=%9) (3 > 0).

The following relation is typical for this wide range in the parameters: for » =103-10% the current is cut in
for x =10, and for » =108 for x&#4-5. The solutions are rapidly varying functions of the coordinate near the
region of current cut in and naturally vary with w. However, one expects that the effects of the initial zone
will become weaker as we move away from the start of the layer and that the solutions for the various approx-
imations near zero will come together. Calculations confirm this. For example, the g(x) curves for various
w differ by 3-5 orders of magnitude, come together asx increases, and differby only 2-3% for x = 102,

For # = G =0 Egs. (3.10)-(3.14) become the system examined in [1]. In particular, a detailed study
was made there of the asymptotes of the solutions for x—0, x —=, A —0. One can obtain analogous expansions
for system (3.10)-(3.14) for the case & —=(; these are very cumbersome and are not given., We merely note
that the singularities on the right sides of (3.10)~(3.13) at x =0 can be removed. In the general case of arbitrary
values of the similarity criteria #, G, A the system (3.10)-(3.14) has been integrated numerically, and most
of the calculations were performed for w =10%-10%,

5. Figure 2 shows the enthalpy profiles 2 (1 - # =0,6=0,A=0;2 -~ P =0,G=10" A =0;3 — P =
0,6=10-2 A=0;4—P =1, G=10",, A=0; § — P = 1, G=10"% A =103 6—P =0,G6=0,A = 10-3).
Curvel is described by the formula g=1 +x and gives the enthalpy distribution in the absence of current and
heat transfer. Comparison of curves 1, 2, and 3 indicates that there is a marked effect from ohmic dissipation
by the reversé current on the gas heating. Curves 2 and 3 initially rise rapidly because of the current switch
in, but the rise becomes slower as x increases and the slope approximates to the slope of curve 1, which means
that the role of the Joule heating falls as the channel heats up and the conductivity increases ¢he difference in
the ordinates for curves 2 and 1 for a given x gives the enthalpy due to the current dissipation). There is a
relatively small effect from the pressure change in the layer as regards the enthalpy (curves 3 and 4), which
agrees with the previous assumption about the neglect of Qp. The sign of the effect has a clear physical mean-
ing: Pressure reduction leads to gas cooling. Finally, comparison of curves 1 and 6 with 4 and 5 confirms
the important role of heat transfer in the correct estimation of the enthalpy at the axis.

Particular interest attaches to the density reduction inthe gas within the thermal layer. Figure 3 shows
the theoretical results for the density as a function of the coordinate (I —# =0, G =0, A =0; 2 - P =0, G =
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102, A=0; 3—Z =101 G=10% A=0; 4 - P =1, G=107% A=0; 5—F =1,6=0,A =0;6—P=0,G

=10-2, A=10-%); curve 1 is described by the equation p=(1 +x)7! and gives the density distribution in the ab-
sence of current and heat transfer. The Joule heating has a relatively small effect on the density change (curves
1 and 2), whereas the pressure reduction in the boundary layer produces a considerable density change (curves

2 and 3 as against 3 and 4 or 1 and 5). The density reduction may increase by an order or more. As regards
the effects of Joule heating and pressure change in the layer we can say that the effect of the first is seenmainly
in the enthalpy change, while the second is seen mainly in the density. The heat transfer substantially reduces
g and increases the density in the layer, so it should be incorporated.

The solution can be checked from p (x), which takes the following form: The pressure falls to pyipy then
increases very slightly with x when the reverse current attains its maximum value. Table 1 illustrates the
dependence of pyiy on the parameters.

Figure 4 shows the variation of the enthalpy-input layer thickness with the coordinate for various values
of the similarity criteria (solidlines I — % =0,6=0,A =0, 2 —P =0,G=10-2, A =0; 3 — P = 0, G = 10,
A=10% 4P =1, G6=102A=05—P =0,G6=0, A=10-%. Curve 1 is described by the formula
& =In(l + x) and represents the layer in the absence of current and heat transfer. Joule heating produces an
appreciable increase inthe thickness (curves 1 and 2). Heat transfer also increases the thickness (compare
curves 2 and S with 1 and 5), and when these two effects go together there is particularly marked expansion of
the layer (Fig. 3). Conversely, the pressure change in the layer reduces the thickness (curves 2 and 4).

Broken lines 6-9 in Fig. 4 show the redistribution of the reverse current over the cross section of the
current layer as the thickness increases (6—# =0, G=10", A =0, 7 —-P =0, G=10"2% A=0; §— P
=04, 6=10"% A =0,9 — P =1, ¢ =102, A = 0) ; the ordinate shows the ratioof the proportion of the
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reverse current J, flowing outside the current tube with radius a to the value of the reverse current Jg flow
at r<a. The magnetic pressure tends to displace the reverse current from the axis towards the periphery,
but the thickness of the current layer and the current distribution in it are determined by the conductivity
profile. The graphs show that the proportion of the peripheral current increases monotonically with x. The
Joule heating and the pressure reduction in the layer tend to increase Jy/J,, whereas the value is largely un-~
affected by the heat traunsfer.

Finally, Fig. 5 shows typical enthalpy distributions (solid lines 1-4) along with conductivity ones (broken
lines 5-8) transverse to the thermal layer for various values of x (# =1, G = 10-%, A = 0, curves 1 and 5 cor-
respond to z = 13.5; 2, 6 — z == 24.7; 3, 7 — z = 61.7; 4, 8 — z = 87.7). The thickness of the current layer
is about half the thickness of the thermal layer and increases somewhat with x. The graphs illustrate that the
increase in the conductivity is rapid by comparison with that in the enthalpy in the initial part and that the pro-
file is drawn out, which is characteristic of weakly ionized plasma. )

In conclusion we consider briefly the variations inthe electromagnetic quantities. The axial electric
field is maximal at the start of the layer and decreases monotonically as x increases. The fall is correlated
with the increase inthe conductivity and thickness of the thermal layer by the constant-current condition (3.12).
The mean values of the magnetic field and the radial electric field decrease in accordance with the increase in
current layer thickness. The mean density of the reverse current decreases as x increases more rapidly than
the thickness of the current layer increases.

We are indebted to M. A. Vlasov, 8. I. Vybornov, and A. V. Zharinov for discussions.
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